Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Med Primatol ; 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2260962

ABSTRACT

Increases of soluble urokinase plasminogen activator receptor (suPAR) were measured in both urine and plasma of a Chlorocebus aethiops (African green monkey; AGM) mucosal infected with SARS-CoV-2. The data indicate that elevated suPAR may be associated with renal dysfunction and pathology in the context of COVID-19.

2.
Regul Toxicol Pharmacol ; 138: 105327, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2165970

ABSTRACT

The nonhuman primate (NHP) has always been a limited resource for pharmaceutical research with ongoing efforts to conserve. This is due to their inherent biological properties, the growth in biotherapeutics and other modalities, and their use in small molecule drug development. The SARS-CoV-2 pandemic has significantly impacted the availability of NHPs due to the immediate need for NHPs to develop COVID-19 vaccines and treatments and the China NHP export ban; thus, accelerating the need to further replace, reduce and refine (3Rs) NHP use. The impact of the NHP shortage on drug development led DruSafe, BioSafe, and the United States (U.S.) Food and Drug Administration (FDA) Center for Drug Evaluation and Research (CDER) to discuss this issue at their 2021 annual meeting. This meeting identified areas to further the 3Rs in NHP use within the current nonclinical safety evaluation regulatory framework and highlighted the need to continue advancing alternative methods towards the aspirational goal to replace use of NHPs in the long term. Alignment across global health authorities is necessary for implementation of approaches that fall outside existing guidelines. This article captures the proceedings from this meeting highlighting current best practices and areas for 3Rs in NHP use.


Subject(s)
COVID-19 , Primates , Animals , Humans , United States , United States Food and Drug Administration , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2
3.
Microbiol Spectr ; 10(5): e0226322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019798

ABSTRACT

We investigated the distribution, virulence, and pathogenic characteristics of mutated SARS-CoV-2 to clarify the association between virulence and the viral spreading ability of current and future circulating strains. Chinese rhesus macaques were infected with ancestral SARS-CoV-2 strain GD108 and Beta variant B.1.351 (B.1.351) and assessed for clinical signs, viral distribution, pathological changes, and pulmonary inflammation. We found that GD108 replicated more efficiently in the upper respiratory tract, whereas B.1.351 replicated more efficiently in the lower respiratory tract and lung tissue, implying a reduced viral shedding and spreading ability of B.1.351 compared with that of GD108. Importantly, B.1.351 caused more severe lung injury and dramatically elevated the level of inflammatory cytokines compared with those observed after infection with GD108. Moreover, both B.1.351 and GD108 induced spike-specific T-cell responses at an early stage of infection, with higher levels of interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in the B.1.351 group and higher levels of interleukin 17 (IL-17) in the GD108 group, indicating a divergent pattern in the T-cell-mediated inflammatory "cytokine storm." This study provides a basis for exploring the pathogenesis of SARS-CoV-2 variants of concern (VOCs) and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs. IMPORTANCE One of the priorities of the current SARS-CoV-2 vaccine and drug research strategy is to determine the changes in transmission ability, virulence, and pathogenic characteristics of SARS-CoV-2 variants. In addition, nonhuman primates (NHPs) are suitable animal models for the study of the pathogenic characteristics of SARS-CoV-2 and could contribute to the understanding of pathogenicity and transmission mechanisms. As SARS-CoV-2 variants continually emerge and the viral biological characteristics change frequently, the establishment of NHP infection models for different VOCs is urgently needed. In the study, the virulence and tissue distribution of B.1.351 and GD108 were comprehensively studied in NHPs. We concluded that the B.1.351 strain was more virulent but exhibited less viral shedding than the latter. This study provides a basis for determining the pathogenic characteristics of SARS-CoV-2 and establishes an applicable animal model for evaluating the efficacy and safety of vaccines and drugs.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Interleukin-17 , Virus Shedding , Virulence , COVID-19 Vaccines , Tumor Necrosis Factor-alpha , Macaca mulatta , Interferon-gamma , Disease Models, Animal
4.
Matter ; 5(9): 2960-2974, 2022 Sep 07.
Article in English | MEDLINE | ID: covidwho-1983634

ABSTRACT

Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.

5.
Toxicol Pathol ; 50(5): 560-573, 2022 07.
Article in English | MEDLINE | ID: covidwho-1902220

ABSTRACT

Cynomolgus macaques, the most commonly utilized nonhuman primate in nonclinical toxicology studies, are acquired from purpose-bred colonies across various geographic locations, including China, Cambodia, and Vietnam. Importation challenges and limited availability have restricted animals suitable for inclusion in nonclinical studies. The coronavirus disease 2019 (COVID-19) outbreak further stressed supply chains, reducing the ability to source animals from a singular location to complete a drug development program. These challenges raised concerns of increased variability in study endpoints due to heterogeneity of animals and that this could subsequently impact historical control data and toxicology study interpretation. To investigate the impact of Chinese, Vietnamese, or Cambodian geographic origin on standard nonclinical toxicology study endpoints, historical control data from studies conducted at a single facility from 2005 to 2020 were compiled and evaluated for the following: clinical observations, body weight, ophthalmoscopic examinations, and clinical and anatomic pathology data. Study populations consisted of 2- to 5-year-old cynomolgus macaques sourced from China (n = 750 males/741 females), Cambodia (n = 282 males/271 females), and Vietnam (n = 122 males/120 females). Interpretation of the various data demonstrated no notable differences in standard toxicology study endpoints or background findings among cynomolgus macaques originating from China, Cambodia, or Vietnam.


Subject(s)
COVID-19 , Animals , Asian People , China , Female , Humans , Macaca fascicularis , Male , Vietnam
6.
Viruses ; 14(5)2022 05 10.
Article in English | MEDLINE | ID: covidwho-1869804

ABSTRACT

The emergence of SARS-CoV-2 and the subsequent pandemic has highlighted the need for animal models that faithfully replicate the salient features of COVID-19 disease in humans. These models are necessary for the rapid selection, testing, and evaluation of potential medical countermeasures. Here, we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure-combined intratracheal/intranasal and small particle aerosol-in two nonhuman primate species, rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models produced suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Subject(s)
COVID-19 , Aerosols , Animals , Disease Models, Animal , Macaca fascicularis , SARS-CoV-2 , Severity of Illness Index
7.
Front Immunol ; 13: 855230, 2022.
Article in English | MEDLINE | ID: covidwho-1862604

ABSTRACT

Most children are less severely affected by coronavirus-induced disease 2019 (COVID-19) than adults, and thus more difficult to study progressively. Here, we provide a neonatal nonhuman primate (NHP) deep analysis of early immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in blood and mucosal tissues. In addition, we provide a comparison with SARS-CoV-2-infected adult NHP. Infection of the neonate resulted in a mild disease compared with adult NHPs that develop, in most cases, moderate lung lesions. In concomitance with the viral RNA load increase, we observed the development of an early innate response in the blood, as demonstrated by RNA sequencing, flow cytometry, and cytokine longitudinal data analyses. This response included the presence of an antiviral type-I IFN gene signature, a persistent and lasting NKT cell population, a balanced peripheral and mucosal IFN-γ/IL-10 cytokine response, and an increase in B cells that was accompanied with anti-SARS-CoV-2 antibody response. Viral kinetics and immune responses coincided with changes in the microbiota profile composition in the pharyngeal and rectal mucosae. In the mother, viral RNA loads were close to the quantification limit, despite the very close contact with SARS-CoV-2-exposed neonate. This pilot study demonstrates that neonatal NHPs are a relevant model for pediatric SARS-CoV-2 infection, permitting insights into the early steps of anti-SARS-CoV-2 immune responses in infants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Child , Cytokines , Humans , Infant, Newborn , Pilot Projects , Primates/genetics , RNA, Viral
8.
Gastro Hep Adv ; 1(3): 393-402, 2022.
Article in English | MEDLINE | ID: covidwho-1670508

ABSTRACT

BACKGROUND AND AIMS: Apolipoprotein A1 (A1) and haptoglobin (HP) serum levels are associated with the spread and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We have constructed and validated a multivariable risk calculator (A1HPV6) integrating A1, HP, alpha2-macroglobulin, and gamma glutamyl transferase to improve the performances of virological biomarkers. METHODS: In a prospective observational study of hospitalized patients with nonsevere SARS-CoV-2 infection, A1HPV6 was constructed in 127 patients and validated in 116. The specificity was assessed in 7482 controls representing the general population. The primary diagnostic endpoint was the area under the receiver operating characteristic curve in patients with positive SARS-CoV-2 PCR. The primary prognostic endpoint was the age-and sex-adjusted risk of A1HPV6 to predict patients with WHO-stage > 4 (W > 4) severity. We assessed the kinetics of the A1HPV6 components in a nonhuman primate model (NHP), from baseline to 7 days (D7) after SARS-CoV-2 infection. RESULTS: The area under the receiver operating characteristic curve for A1HPV6 was 0.99 (95% CI 0.97-0.99) in the validation subset, which was not significantly different from that in the construction subset, 0.99 (0.99-0.99; P = .80), like for sensitivity 92% (85-96) vs 94% (88-97; P = .29). A1HPV6 was associated with W > 4, with a significant odds ratio of 1.3 (1.1-1.5; 0.002). In NHP, A1 levels decreased (P < .01) at D2 and normalized at D4; HP levels increased at D2 and peaked at D4. In patients, A1 concentration was very low at D2 vs controls (P < .01) and increased at D14 (P < .01) but was still lower than controls; HP increased at D2 and remained elevated at D14. CONCLUSION: These results validate the diagnostic and prognostic performances of A1HPV6. Similar kinetics of apolipoprotein A1, HP, and alpha-2-macroglobulin were observed in the NHP model. ClinicalTrials.gov number, NCT01927133.

9.
Parasit Vectors ; 15(1): 23, 2022 Jan 10.
Article in English | MEDLINE | ID: covidwho-1627901

ABSTRACT

BACKGROUND: Yellow fever virus (YFV) is an arbovirus that, despite the existence of a safe and effective vaccine, continues to cause outbreaks of varying dimensions in the Americas and Africa. Between 2017 and 2019, Brazil registered un unprecedented sylvatic YFV outbreak whose severity was the result of its spread into zones of the Atlantic Forest with no signals of viral circulation for nearly 80 years. METHODS: To investigate the influence of climatic, environmental, and ecological factors governing the dispersion and force of infection of YFV in a naïve area such as the landscape mosaic of Rio de Janeiro (RJ), we combined the analyses of a large set of data including entomological sampling performed before and during the 2017-2019 outbreak, with the geolocation of human and nonhuman primates (NHP) and mosquito infections. RESULTS: A greater abundance of Haemagogus mosquitoes combined with lower richness and diversity of mosquito fauna increased the probability of finding a YFV-infected mosquito. Furthermore, the analysis of functional traits showed that certain functional groups, composed mainly of Aedini mosquitoes which includes Aedes and Haemagogus mosquitoes, are also more representative in areas where infected mosquitoes were found. Human and NHP infections were more common in two types of landscapes: large and continuous forest, capable of harboring many YFV hosts, and patches of small forest fragments, where environmental imbalance can lead to a greater density of the primary vectors and high human exposure. In both, we show that most human infections (~ 62%) occurred within an 11-km radius of the finding of an infected NHP, which is in line with the flight range of the primary vectors. CONCLUSIONS: Together, our data suggest that entomological data and landscape composition analyses may help to predict areas permissive to yellow fever outbreaks, allowing protective measures to be taken to avoid human cases.


Subject(s)
Brazil , Culicidae , Disease Outbreaks , Mosquito Vectors , Yellow Fever/transmission , Aedes/growth & development , Aedes/virology , Animals , Biodiversity , Brazil/epidemiology , Climate , Culicidae/growth & development , Culicidae/virology , Forests , Humans , Mosquito Vectors/classification , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Risk Factors , Yellow Fever/epidemiology
10.
Ecohealth ; 18(4): 414-420, 2021 12.
Article in English | MEDLINE | ID: covidwho-1540235

ABSTRACT

In 2019, a new coronavirus disease (COVID-19) was detected in China. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was capable to infect domestic and captive mammals like cats, tigers and minks. Due to genetic similarities, concern about the infection of non-human primates (NHPs) and the establishment of a sylvatic cycle has grown in the Americas. In this study, neotropical primates (NP) were sampled in different areas from Brazil to investigate whether they were infected by SARS-CoV-2. A total of 89 samples from 51 NP of four species were examined. No positive samples were detected via RT-qPCR, regardless of the NHP species, tissue or habitat tested. This work provides the first report on the lack of evidence of the circulation of SARS-CoV-2 in NP. The expansion of wild animals sampling is necessary to understand their role in the epidemiology of SARS-CoV-2 and other potentially zoonotic pathogens in natural environments shared by humans.


Subject(s)
COVID-19 , Pandemics , Animals , Brazil , Humans , Primates , SARS-CoV-2
11.
Microbiol Spectr ; 9(3): e0139721, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1532983

ABSTRACT

Human clinical studies investigating use of convalescent plasma (CP) for treatment of coronavirus disease 2019 (COVID-19) have produced conflicting results. Outcomes in these studies may vary at least partly due to different timing of CP administration relative to symptom onset. The mechanisms of action of CP include neutralizing antibodies but may extend beyond virus neutralization to include normalization of blood clotting and dampening of inflammation. Unresolved questions include the minimum therapeutic titer in the CP units or CP recipient as well as the optimal timing of administration. Here, we show that treatment of macaques with CP within 24 h of infection does not reduce viral shedding in nasal or lung secretions compared to controls and does not detectably improve any clinical endpoint. We also demonstrate that CP administration does not impact viral sequence diversity in vivo, although the selection of a viral sequence variant in both macaques receiving normal human plasma was suggestive of immune pressure. Our results suggest that CP, administered to medium titers, has limited efficacy, even when given very early after infection. Our findings also contribute information important for the continued development of the nonhuman primate model of COVID-19. These results should inform interpretation of clinical studies of CP in addition to providing insights useful for developing other passive immunotherapies and vaccine strategies. IMPORTANCE Antiviral treatment options for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain very limited. One treatment that was explored beginning early in the pandemic (and that is likely to be tested early in future pandemics) is plasma collected from people who have recovered from coronavirus disease 2019 (COVID-19), known as convalescent plasma (CP). We tested if CP reduces viral shedding or disease in a nonhuman primate model. Our results demonstrate that administration of CP 1 day after SARS-CoV-2 infection had no significant impact on viral loads, clinical disease, or sequence diversity, although treatment with normal human plasma resulted in selection of a specific viral variant. Our results demonstrate that passive immunization with CP, even during early infection, provided no significant benefit in a nonhuman primate model of SARS-CoV-2 infection.


Subject(s)
COVID-19/therapy , Immunization, Passive/methods , SARS-CoV-2 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antiviral Agents/therapeutic use , COVID-19/immunology , Disease Models, Animal , Humans , Immunity , Lung/pathology , Macaca mulatta , Pandemics , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
12.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462067

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Macaca fascicularis/immunology , Primate Diseases/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung/diagnostic imaging , Lung/immunology , Lung/virology , Macaca fascicularis/virology , Male , Primate Diseases/virology , SARS-CoV-2/physiology , Tomography, X-Ray Computed/methods , Virus Shedding/immunology , Virus Shedding/physiology
13.
Vaccine ; 39(34): 4885-4894, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1284599

ABSTRACT

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we assessed the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induced both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 × 106 pfu) via the intranasal and intratracheal routes we observed significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 was associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provided no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Humans , Macaca mulatta , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
14.
J Pharm Bioallied Sci ; 13(Suppl 1): S31-S35, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1266817

ABSTRACT

Extensive work is being done to form targeted drugs against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, it is imperative to have a safe and effective vaccine against the same to win the war against this pandemic. For creating an efficacious vaccine, a proper animal model needs to be selected which can have an acceptable similarity of response as well as effects when administered to humans. For the present research, extensive search was conducted in MEDLINE and bioRxiv and medRxiv servers which were published in the English language from January 1, 2020, to August 20, 2020. Search terms included animal models, SARS-CoV-2, COVID-19, immune response against coronavirus, nonhuman primates, mice, ferrets, and macaques. In our study, creating an adequate immune response mimicking the response as in humans, as the endpoint, was considered as inclusion criterion while assessment of any additional therapies like safety as well as minimal tolerable dose using animal models as well as formation of adequate sample size of these models against COVID-19 was not considered. In our search, 163 articles were shortlisted, of them only 20 articles were finally included in our study which addressed to our inclusion and exclusion criterion. Our research articles focused on nonhuman primates, mice, hamsters, ferrets, cats, and dogs, with the main goal to investigate the role of animal models in the pathogenesis of COVID-19. It was evident in our research that animal models only mimic limited signs and symptoms experienced in COVID infection as compared to infections in humans. However, they are still essential to understand the pathogenesis, transmissibility of viral particles, and vaccine testing.

15.
Emerg Microbes Infect ; 10(1): 1320-1330, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1266083

ABSTRACT

Ebola virus (EBOV) is a negative single-stranded RNA virus within the Filoviridae family and the causative agent of Ebola virus disease (EVD). Nonhuman primates (NHPs), including cynomolgus and rhesus macaques, are considered the gold standard animal model to interrogate mechanisms of EBOV pathogenesis. However, despite significant genetic similarity (>90%), NHP species display different clinical presentation following EBOV infection, notably a ∼1-2 days delay in disease progression. Consequently, evaluation of therapeutics is generally conducted in rhesus macaques, whereas cynomolgus macaques are utilized to determine efficacy of preventative treatments, notably vaccines. This observation is in line with reported differences in disease severity and host responses between these two NHP following infection with simian varicella virus, influenza A and SARS-CoV-2. However, the molecular underpinnings of these differential outcomes following viral infections remain poorly defined. In this study, we compared published transcriptional profiles obtained from cynomolgus and rhesus macaques infected with the EBOV-Makona Guinea C07 using bivariate and regression analyses to elucidate differences in host responses. We report the presence of a shared core of differentially expressed genes (DEGs) reflecting EVD pathology, including aberrant inflammation, lymphopenia, and coagulopathy. However, the magnitudes of change differed between the two macaque species. These findings suggest that the differential clinical presentation of EVD in these two species is mediated by altered transcriptional responses.


Subject(s)
Gene Expression Regulation/immunology , Hemorrhagic Fever, Ebola/veterinary , Macaca fascicularis , Macaca mulatta , Monkey Diseases/immunology , Transcription, Genetic/immunology , Animals , COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/mortality , Humans , Immunity , Monkey Diseases/genetics , Monkey Diseases/mortality , RNA, Viral/metabolism , SARS-CoV-2 , Species Specificity
16.
Cell Rep ; 34(10): 108837, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1095904

ABSTRACT

Passive transfer of convalescent plasma or serum is a time-honored strategy for treating infectious diseases. Human convalescent plasma containing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently being used to treat patients with coronavirus disease 2019 where clinical efficacy trials are ongoing. Here, we assess therapeutic passive transfer in groups of SARS-CoV-2-infected African green monkeys with convalescent sera containing either high or low anti-SARS-CoV-2 neutralizing antibody titers. Differences in viral load and pathology are minimal between monkeys that receive the lower titer convalescent sera and untreated controls. However, lower levels of SARS-CoV-2 in respiratory compartments, reduced severity of virus-associated lung pathology, and reductions in coagulopathy and inflammatory processes are observed in monkeys that receive high titer sera versus untreated controls. Our data indicate that convalescent plasma therapy in humans may be an effective strategy provided that donor sera contain high anti-SARS-CoV-2 neutralizing titers given in early stages of the disease.


Subject(s)
COVID-19/therapy , COVID-19/veterinary , Primate Diseases/therapy , Primate Diseases/virology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops/immunology , Female , Immunization, Passive/methods , Immunization, Passive/veterinary , Male , Primate Diseases/immunology , Primates/immunology , Viral Load , COVID-19 Serotherapy
17.
Virology ; 554: 97-105, 2021 02.
Article in English | MEDLINE | ID: covidwho-1003123

ABSTRACT

We examined the pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in cynomolgus macaques for 28 days to establish an animal model of COVID-19 for the development of vaccines and antiviral drugs. Cynomolgus macaques infected with SARS-CoV-2 showed body temperature rises and X-ray radiographic pneumonia without life-threatening clinical signs of disease. A neutralizing antibody against SARS-CoV-2 and T-lymphocytes producing interferon (IFN)-γ specifically for SARS-CoV-2 N-protein were detected on day 14 in one of three macaques with viral pneumonia. In the other two macaques, in which a neutralizing antibody was not detected, T-lymphocytes producing IFN-γ specifically for SARS-CoV-2 N protein increased on day 7 to day 14, suggesting that not only a neutralizing antibody but also cellular immunity has a role in the elimination of SARS-CoV-2. Thus, because of similar symptoms to approximately 80% of patients, cynomolgus macaques are appropriate to extrapolate the efficacy of vaccines and antiviral drugs for humans.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Disease Models, Animal , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/pathology , COVID-19/virology , Cytokines/blood , Female , Interferon-gamma/immunology , Macaca fascicularis , Male , Mouth/virology , Nasal Cavity/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Viral Load
18.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-917237

ABSTRACT

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Azetidines/administration & dosage , COVID-19 Drug Treatment , COVID-19/immunology , Macaca mulatta , Neutrophil Infiltration/drug effects , Purines/administration & dosage , Pyrazoles/administration & dosage , Sulfonamides/administration & dosage , Animals , COVID-19/physiopathology , Cell Death/drug effects , Cell Degranulation/drug effects , Disease Models, Animal , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Janus Kinases/antagonists & inhibitors , Lung/drug effects , Lung/immunology , Lung/pathology , Lymphocyte Activation/drug effects , Macrophages, Alveolar/immunology , SARS-CoV-2/physiology , Severity of Illness Index , T-Lymphocytes/immunology , Virus Replication/drug effects
19.
Vaccine ; 38(50): 7892-7896, 2020 11 25.
Article in English | MEDLINE | ID: covidwho-899644

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M™ adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988).


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , SARS-CoV-2/immunology , Adjuvants, Immunologic/pharmacology , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Female , Humans , Immune Sera/drug effects , Immune Sera/immunology , Macaca fascicularis , Male , Middle Aged , Spike Glycoprotein, Coronavirus/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/pharmacology , Vero Cells , Viral Load , Young Adult
20.
Virol J ; 17(1): 125, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-719595

ABSTRACT

We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Animals , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Convalescence , Coronavirus Infections/blood , Disease Models, Animal , Female , Lung Injury/pathology , Lung Injury/virology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Seroconversion , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL